MATEC Web of Conferences (Jan 2018)
Bioethanol Production via Syngas Fermentation
Abstract
Bioconversion of C-1 carbon in syngas through microbial fermentation presents a huge potential to be further explored for ethanol production. Syngas can be obtained from the gasification of lignocellulosic biomass, by which most of carbon content of the biomass was converted into CO and CO2. These gases could be further utilized by carbon-fixing microorganism such as Clostridium sp. to produce ethanol as the end product. In order to obtain an optimum process, a robust and high performance strain is required and thus high ethanol yield as the main product can be expected. In this study, series of batch fermentation was carried out to select high performance strains for ethanol production. Bottle serum fermentations were performed using CO-gas as the sole carbon source to evaluate the potential of some Clostridia species such as Clostridium ljungdahlii, C. ragsdalei, and C. carboxidovorans in producing ethanol at various concentration of yeast extract as the organic nitrogen source, salt concentration, and buffer composition. Strain with the highest ethanol production in the optimum media will be further utilized in the upscale fermentation.