Clinical Interventions in Aging (Jan 2022)

Human Fall Detection Using Passive Infrared Sensors with Low Resolution: A Systematic Review

  • Ben-Sadoun G,
  • Michel E,
  • Annweiler C,
  • Sacco G

Journal volume & issue
Vol. Volume 17
pp. 35 – 53

Abstract

Read online

Grégory Ben-Sadoun,1,2 Emeline Michel,3,4 Cédric Annweiler,1,5– 7 Guillaume Sacco3,5,8 1Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital of Angers, Angers, France; 2Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Caen, 14000, France; 3Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique du Cerveau et du Mouvement, Nice, France; 4Université Côte d’Azur, LAMHESS, Nice, France; 5Laboratoire de Psychologie des Pays de la Loire, Univ Angers, Université de Nantes, EA 4638 LPPL, SFR CONFLUENCES, Angers, F-49000, France; 6School of Medicine, Health Faculty, University of Angers, Angers, France; 7Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada; 8Université Côte d’Azur, CoBTek, Nice, FranceCorrespondence: Grégory Ben-SadounDepartment of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital of Angers, Angers, FranceEmail [email protected]; [email protected]; [email protected]: Systems using passive infrared sensors with a low resolution were recently proposed to answer the dilemma effectiveness–ethical considerations for human fall detection by Information and Communication Technologies (ICTs) in older adults. How effective is this type of system? We performed a systematic review to identify studies that investigated the metrological qualities of passive infrared sensors with a maximum resolution of 16× 16 pixels to identify falls. The search was conducted on PubMed, ScienceDirect, SpringerLink, IEEE Xplore Digital Library, and MDPI until November 26– 28, 2020. We focused on studies testing only these types of sensor. Thirteen articles were “conference papers”, five were “original articles” and one was a found in arXiv.org (an open access repository of scientific research). Since four authors “duplicated” their study in two different journals, our review finally analyzed 15 studies. The studies were very heterogeneous with regard to experimental procedures and detection methods, which made it difficult to draw formal conclusions. All studies tested their systems in controlled conditions, mostly in empty rooms. Except for two studies, the overall performance reported for the detection of falls exceeded 85– 90% of accuracy, precision, sensitivity or specificity. Systems using two or more sensors and particular detection methods (eg, 3D CNN, CNN with 10-fold cross-validation, LSTM with CNN, LSTM and Voting algorithms) seemed to give the highest levels of performance (> 90%). Future studies should test more this type of system in real-life conditions.Keywords: fall detection, older adults, passive infrared sensor, thermal sensor, thermopile

Keywords