International Journal of Advanced Design and Manufacturing Technology (Aug 2024)

Nonlinear Mechanical Properties of Random Networks Composed of Nonlinear Fibers

  • Reyhaneh Mirkhani,
  • Ali Asghar Alamdar,
  • Saeed Ebrahimi

Journal volume & issue
Vol. 17, no. 2
pp. 33 – 42

Abstract

Read online

The disordered fibrous networks provide load-bearing and main structural to different biological materials such as soft tissues. These networks display a highly nonlinear stress-strain relationship behavior when subjected to mechanical loads. This nonlinear strain-stiffening behavior is dependent on the network microstructure and properties of constituting fiber. We conduct a comprehensive computational study to characterize the importance of material properties of individual fibers as well as the local connectivity or coordination number and bending rigidity in the overall nonlinear mechanical response of a 3D random fiber network. The presented model shows the nonlinear stiffening with increasing applied shear strain more than critical shear strain. We determine the amount of strain-stiffening as a function of network microstructure parameters and the amount of nonlinearity of the fibers. The results show that the constitutive behavior of fibers displays much more strain-stiffening than networks made up of linear fibers. We find that the importance of the nonlinear reaction of individual fiber materials in the general mechanical behavior of networks becomes more important with increasing network connectivity. Furthermore, the amount of stress created in the network under shear increases with the enhanced connectivity of the network due to an increase in the network stiffness. Our model points to the important role of the mechanical response of individual fiber as well as the microstructure of the network in determining the overall mechanical properties of the 3D random network, which could be used to design and better understand the complex biomimetic network systems such as biological tissues and artificial engineering networks.

Keywords