BMC Neuroscience (Nov 2012)

A novel rodent model of spinal metastasis and spinal cord compression

  • Zibly Zion,
  • Schlaff Cody D,
  • Gordon Ira,
  • Munasinghe Jeeva,
  • Camphausen Kevin A

DOI
https://doi.org/10.1186/1471-2202-13-137
Journal volume & issue
Vol. 13, no. 1
p. 137

Abstract

Read online

Abstract Background Spinal cord metastatic lesions affect a high number of cancer patients usually resulting in spinal cord compression syndrome. A major obstacle in the research of spinal metastatic disease is the lack of a simple reproducible animal model that mimics the natural course of the disease. In this study, we present a highly reproducible rodent model that can be used for different types of cancers while mimicking the natural course of human metastatic spinal cord compression syndrome. Results All sixteen Fisher 344 rats survived the dorsal approach intraosseous implantation of CRL-1666 adenocarcinoma cells and both rats survived the sham control surgery. By Day 13 functional analysis via the modified Basso-Beattie-Bresnahan (BBB) locomotor rating scale showed significant decrease in motor function; median functional score was 3 for the tumor group (p = 0.0011). Median time to paresis was 8.7 days post-operatively. MR imaging illustrated repeated and consistent tumor formation, furthermore, onset of neurological sequale was the result of tumor formation and cord compression as confirmed by histological examination. Conclusions Analysis of these findings demonstrates a repeatable and consistent tumor growth model for cancer spinal metastases in rats. This novel rat model requires a less intricate surgical procedure, and as a result minimizes procedure time while subsequently increasing consistency. Therefore, this model allows for the preclinical evaluation of therapeutics for spinal metastases that more closely replicates physiological findings.

Keywords