PLoS ONE (Jan 2009)

The induction of APC with a distinct tolerogenic phenotype via contact-dependent STAT3 activation.

  • Devorah Gur-Wahnon,
  • Zipora Borovsky,
  • Meir Liebergall,
  • Jacob Rachmilewitz

DOI
https://doi.org/10.1371/journal.pone.0006846
Journal volume & issue
Vol. 4, no. 8
p. e6846

Abstract

Read online

BACKGROUND: Activation of the signal transducer and activator of transcription 3 (STAT3) within antigen presenting cells (APCs) is linked to abnormal APCs differentiation and function. We have previously shown that STAT3 is activated within APC by a novel contact-dependent mechanism, which plays a key role in mediating the immunomodulatory effects of hMSC. In order to better understand the underlying mechanisms that control APC maturation in a contact dependent manner, we extended our observation to tumor cells. Tumors were shown to secrete a variety of tumor-derived factors that activate STAT3 within infiltrating APCs. We now tested whether tumor cells can activate STAT3 within APC using the contact-dependent mechanism, in addition to soluble factors, and compared these two STAT3 activating pathways. PRINCIPAL FINDINGS: We demonstrate that in addition to tumor-derived secreted factors tumor cells activate STAT3 by a mechanism that is based on cell-cell interaction. We further demonstrate that these two STAT3 activating mechanisms differ in their JAK usage and their susceptibility to JSI-124 inhibition thereby representing two distinct pathways. Significantly, although both pathways activate STAT3, they modulate DCs maturation in a different manner that results in disparate phenotypic outcomes. Whereas the soluble-dependent pathway results in an immature phenotype, the contact-dependent pathway results in an apparently mature phenotype. Albeit their mature-like phenotype these latter cells express the tolerogenic markers ILT3 and ILT4 and possess T cell inhibitory activity. SIGNIFICANCE: This data suggests that, in at least certain cellular microenvironments, cell:cell interactions represent a novel way to activate STAT3 signaling, uncouple APC activation events and consequently regulate immunity and tolerance. Significantly, we have now demonstrated that this contact-dependent signaling pathway differs from that mediated by soluble factors and cytokines, inducing disparate phenotypic outcome, suggesting these two mechanisms have different and possibly complementary biological functions.