Annales Geophysicae (Jul 2007)
Observations at geosynchronous orbit of a persistent Pc5 geomagnetic pulsation and energetic electron flux modulations
Abstract
A long lasting narrow-band (4–7 mHz) Pc5 fluctuation event at geosynchronous orbit is presented through measurements from GOES-8 and GOES-10 and the response of energetic electrons with drift frequencies close to the narrow-band pulsation frequency is monitored through a spectral analysis of flux data from the LANL-SOPA energetic electron instrument. This analysis shows electron flux modulations at the magnetospheric pulsation's frequency as well as at various other frequencies in the Pc5 range, related to the particles' drift-frequencies and their harmonics. A drift resonance effect can be seen, with electron flux modulation becoming more evident in the energy channels of electrons with drift frequencies closer to the wave frequency; however no net increase or decrease in energetic electron flux is observed, indicating that the net energy transfer and transport of electrons is not significant. This Pc5 event has a long duration, being observed for more than a couple of days at geosynchronous orbit over several traversals of the two GOES satellites, and is localized in azimuthal extent. Spectral analysis shows that most of the power is in the transverse components. The frequency of the narrow-band event, as observed at geosynchronous orbit shifts during the time of the event from 7±0.5 mHz to about 4±0.5 mHz. On the ground, CARISMA magnetometers record no distinct narrow-band fluctuation in the magnetic field, and neither does Geotail, which is traversing the outer magnetosphere a few RE further out from geosynchronous orbit, at the same UT and LT that GOES-8 and -10 observe the pulsations, suggesting that that there is no connection to external fluctuations originating in the solar wind. An internal generation mechanism is suggested, such as could be provided by energetic ring current particles, even though conclusive evidence could not be provided for this particular event. Through a statistical study, it is found that this event belongs to a class of similar events, occurring predominantly in the post-noon region in the inner magnetosphere.