Cailiao gongcheng (Nov 2023)
Preparation and properties of 3D cross-finger electrode symmetrical micro capacitor based on PI
Abstract
With the development of the Internet of Things, the rapid development of miniaturized self-powered electronic products and further micro-modulation greatly stimulate the urgent demand for microscale electrochemical energy storage devices. In each electrochemical energy storage device, the supercapacitor based on the plane pattern shape is highly compatible with modern electronic products in terms of functional features such as miniaturization and integration. In this work, the flexible 3D interdigital electrode symmetric micro capacitor was prepared by the combination of semiconductor preparation technology and electrophoresis printing technology, and the 3D printing was carried out by using oxygen enriched activated carbon ink. The 3D interdigital symmetric electrode was prepared by adjusting and optimizing the electric field strength, line width, number of printing layers and other parameters. The energy dispersive spectrometer (EDS), scanning electron microscopy(SEM), rheometer, electrochemical workstation and test system were used to characterize materials, pastes and microcapacitor devices, and to explore the influence of materials and pastes on the performance of 3D interdigital microcapacitor. The results that the 3D interdigital supercapacitor prepared by the combination of semiconductor and electrophoresis printing process has good performances, and its area capacitance can reach 22.3 mF·cm-2. In addition, the device can achieve 96% capacity retention after 2000 cycles through packaging optimization. This simple and controllable 3D jet printing technology provides an effective way to prepare advanced miniaturized electrochemical energy storage devices.
Keywords