Atmospheric Chemistry and Physics (Nov 2016)

The spectral signature of cloud spatial structure in shortwave irradiance

  • S. Song,
  • S. Song,
  • K. S. Schmidt,
  • K. S. Schmidt,
  • P. Pilewskie,
  • P. Pilewskie,
  • M. D. King,
  • A. K. Heidinger,
  • A. Walther,
  • H. Iwabuchi,
  • G. Wind,
  • O. M. Coddington

DOI
https://doi.org/10.5194/acp-16-13791-2016
Journal volume & issue
Vol. 16
pp. 13791 – 13806

Abstract

Read online

In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields – specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport (H) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε, which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12–19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections.