International Journal of Aerospace Engineering (Jan 2020)
A Novel Linear Active Disturbance Rejection Control Design for Air-Breathing Supersonic Vehicle Attitude System with Prescribed Performance
Abstract
This paper investigates the design problem of the attitude controller for air-breathing supersonic vehicle subject to uncertainties and disturbances. Firstly, the longitudinal model is established for the attitude controller design which is devised as a strict feedback formulation, and a transformed tracking error is derived with the prescribed performance control technique such that it can limit the tracking error to a predefined region. Then, a novel linear active disturbance rejection control scheme is proposed for the attitude system to enhance the steady-state and transient-state performances by incorporating the transformed tracking error. On the basis of the Lyapunov stability theorem, the convergence and stability characteristics are both rigorously proved for the closed-loop system. Finally, extensive contrast simulations are conducted to demonstrate the effectiveness, robustness, and advantage of the proposed control strategy.