Scientific Reports (Feb 2017)

Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks

  • Valery S. Shchesnovich

DOI
https://doi.org/10.1038/s41598-017-00044-8
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 11

Abstract

Read online

Abstract For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n 1, … n r particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymptotic law for distinguishable particles, governed by a multinomial distribution, modified by the quantum statistics with stronger effect for greater particle density N/M. Furthermore, it is shown that the same Gaussian law is the asymptotic form of the probability to count particles at the output bins of a fixed multiport with the averaging performed over all possible configurations of the particles in the input ports. In the limit N → ∞, the average counting probability for indistinguishable bosons, fermions, and distinguishable particles differs only at a non-vanishing particle density N/M and only for a singular binning K/M → 1, where K output ports belong to a single bin.