IEEE Open Journal of the Communications Society (Jan 2021)
Defeating Jamming Using Outage Performance Aware Joint Power Allocation and Access Point Placement in Uplink Pairwise NOMA
Abstract
In this paper, an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario using a mobile access point (AP) or an unmanned aerial vehicle in the presence of a jamming attack is considered. To mitigate the influence of the jamming attack, a joint power allocation and AP placement design is proposed. Accordingly, closed-form expressions of the overall outage probability (OOP) and the individual outage probability (IOP) considering imperfect channel state information for each of the source nodes the AP serves, are derived over Nakagami- $m$ fading channels using dynamic decoding order and fixed pairwise power allocation. We conduct an investigation of the effect of different parameters such as power allocation, source node placements, AP placement, target rates, and jammer location on the OOP and the IOP performance. By adapting the power allocation and the AP placement to the jamming attack, the communication reliability can be increased significantly compared to neglecting the presence of the jammer or treating the jammer as noise. Since the malicious jammer and the AP have conflicting interests in terms of communication reliability, we formulate a non-cooperative game for the two players considering their positions and the power allocation of the NOMA nodes as their strategies and the OOP as utility function. We propose using hybrid simulated annealing - greedy algorithms to address the joint power allocation and AP placement problem for the cases of both a fixed and a mobile jammer. Finally, the Nash equilibrium points are obtained and then the UAV goes directly to this position and keeps staying there to save power consumption.
Keywords