Scientific Reports (Sep 2023)
Renewable-based charging in green ride-sharing
Abstract
Abstract Governments, regulatory bodies, and manufacturers are proposing plans to accelerate the adoption of electric vehicles (EVs), with the goal of reducing the impact of greenhouse gases and pollutants from internal combustion engines on human health and climate change. In this context, the paper considers a scenario where ride-sharing enterprises utilize a 100%-electrified fleet of vehicles, and seeks responses to the following key question: How can renewable-based EV charging be maximized without disrupting the quality of the ride-sharing services? We propose a new mechanism to promote EV charging during hours of high renewable generation, and we introduce the concept of charge request, which is issued by a power utility company. Our mechanism is inspired by a game-theoretic approach where the power utility company proposes incentives and the ride-sharing platform assigns vehicles to both ride and charge requests; the bargaining mechanism leads to prices and EV assignments that are aligned with the notion of Nash equilibria. Numerical results show that it is possible to shift the EV charging during periods of high renewable generation and adapt to intermittent generation while minimizing the impact on the quality of service. The paper also investigates how the users’ willingness to ride-share affects the charging strategy and the quality of service.