Computation (Feb 2023)

Pricing and Hedging Index Options under Mean-Variance Criteria in Incomplete Markets

  • Pornnapat Yamphram,
  • Phiraphat Sutthimat,
  • Udomsak Rakwongwan

DOI
https://doi.org/10.3390/computation11020030
Journal volume & issue
Vol. 11, no. 2
p. 30

Abstract

Read online

This paper studies the portfolio selection problem where tradable assets are a bank account, and standard put and call options are written on the S&P 500 index in incomplete markets in which there exist bid–ask spreads and finite liquidity. The problem is mathematically formulated as an optimization problem where the variance of the portfolio is perceived as a risk. The task is to find the portfolio which has a satisfactory return but has the minimum variance. The underlying is modeled by a variance gamma process which can explain the extreme price movement of the asset. We also study how the optimized portfolio changes subject to a user’s views of the future asset price. Moreover, the optimization model is extended for asset pricing and hedging. To illustrate the technique, we compute indifference prices for buying and selling six options namely a European call option, a quadratic option, a sine option, a butterfly spread option, a digital option, and a log option, and propose the hedging portfolios, which are the portfolios one needs to hold to minimize risk from selling or buying such options, for all the options. The sensitivity of the price from modeling parameters is also investigated. Our hedging strategies are decent with the symmetry property of the kernel density estimation of the portfolio payout. The payouts of the hedging portfolios are very close to those of the bought or sold options. The results shown in this study are just illustrations of the techniques. The approach can also be used for other derivatives products with known payoffs in other financial markets.

Keywords