AIMS Mathematics (Nov 2023)

Existence theorems for the dbar equation and Sobolev estimates on q-convex domains

  • Haroun Doud Soliman Adam,
  • Khalid Ibrahim Adam,
  • Sayed Saber,
  • Ghulam Farid

DOI
https://doi.org/10.3934/math.20231594
Journal volume & issue
Vol. 8, no. 12
pp. 31141 – 31157

Abstract

Read online

In this paper, we study a sufficient condition for subelliptic estimates in the weak $ \operatorname{Z}(k) $ domain with $ \operatorname{\operatorname{C}}^{3} $ boundary in an $ n $-dimentionsl $ \operatorname{Stein\, manifold} $ $ \operatorname{X} $. Consequently, the compactness of the $ \overline\partial $-Neumann operator $ \operatorname{N} $ on $ { M } $ is obtained and the closedness ranges of $ \overline\partial $ and $ \overline\partial^* $ are presented. The $ \operatorname{L}^2 $-setting and the Sobolev estimates of $ \operatorname{N} $ on $ { M } $ are proved. We study the $ \overline\partial $ problem with support conditions in $ { M } $ for $ \Xi $-valued $ (\operatorname{p}, \operatorname{k}) $ forms, where $ \Xi $ is the $ m $-times tensor product of holomorphic line bundle $ \Xi^{\otimes \operatorname{m}} $ for positive integer $ m $. Moreover, the compactness of the weighted $ \overline\partial $-Neumann operator is studied on an annular domain in a $ \operatorname{Stein\, manifold} $ $ { M } = { M }_{1}\backslash\overline{ M }_{2} $, between two smooth bounded domains $ { M }_{1} $ and $ { M }_{2} $ satisfy $ \overline{ M }_{2}\Subset{ M }_{1} $, $ { M }_{1} $ is weak $ Z(k) $, $ { M }_{2} $ is weak $ Z(n-1-k) $, $ 1 \leqslant k\leqslant n -2 $ with $ n \geqslant 3 $. In all cases, the closedness of $ \overline\partial $ and $ \overline\partial^* $, global boundary regularity for $ \overline\partial $ and $ \overline\partial_b $ are studied.

Keywords