IUCrJ (Jul 2017)

Classification of crystal structure using a convolutional neural network

  • Woon Bae Park,
  • Jiyong Chung,
  • Jaeyoung Jung,
  • Keemin Sohn,
  • Satendra Pal Singh,
  • Myoungho Pyo,
  • Namsoo Shin,
  • Kee-Sun Sohn

DOI
https://doi.org/10.1107/S205225251700714X
Journal volume & issue
Vol. 4, no. 4
pp. 486 – 494

Abstract

Read online

A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

Keywords