Journal of Imaging (Oct 2021)

A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset

  • Leandro Donisi,
  • Giuseppe Cesarelli,
  • Anna Castaldo,
  • Davide Raffaele De Lucia,
  • Francesca Nessuno,
  • Gaia Spadarella,
  • Carlo Ricciardi

DOI
https://doi.org/10.3390/jimaging7100215
Journal volume & issue
Vol. 7, no. 10
p. 215

Abstract

Read online

Although prostate cancer is one of the most common causes of mortality and morbidity in advancing-age males, early diagnosis improves prognosis and modifies the therapy of choice. The aim of this study was the evaluation of a combined radiomics and machine learning approach on a publicly available dataset in order to distinguish a clinically significant from a clinically non-significant prostate lesion. A total of 299 prostate lesions were included in the analysis. A univariate statistical analysis was performed to prove the goodness of the 60 extracted radiomic features in distinguishing prostate lesions. Then, a 10-fold cross-validation was used to train and test some models and the evaluation metrics were calculated; finally, a hold-out was performed and a wrapper feature selection was applied. The employed algorithms were Naïve bayes, K nearest neighbour and some tree-based ones. The tree-based algorithms achieved the highest evaluation metrics, with accuracies over 80%, and area-under-the-curve receiver-operating characteristics below 0.80. Combined machine learning algorithms and radiomics based on clinical, routine, multiparametric, magnetic-resonance imaging were demonstrated to be a useful tool in prostate cancer stratification.

Keywords