Heliyon (Aug 2024)

In vivo identification of bioactive components of Poria cocos for adjusting mitochondria against metabolic dysfunction-associated fatty liver disease

  • Yanjuan Li,
  • Pengquan Wang,
  • Huan Yang,
  • Jinbiao He,
  • Yu Yang,
  • Yuxuan Tao,
  • Min Zhang,
  • Mei Zhang,
  • Jie Yu,
  • Xingxin Yang

Journal volume & issue
Vol. 10, no. 16
p. e35645

Abstract

Read online

Currently, no specific treatment exists to alleviate metabolic dysfunction-associated fatty liver (MAFLD). Previously, Poria cocos (PC) effectively relieved MAFLD, but its bioactive components are still unknown. The bioactive substances in PC that regulate mitochondria function to alleviate MAFLD were thus determined. The L02 hepatocyte model induced by fat emulsion and the MAFLD rat model induced by a high-fat diet (HFD) were developed to explore the efficacy of PC against MAFLD. The activity of PC-derived components in the liver mitochondria of HFD-fed rats was evaluated using the L02 hepatocyte model. Additionally, the PC-derived components from the liver mitochondria were identified by ultra-high performance liquid chromatography/mass spectrometry. Finally, the anti-steatosis ability of PC-derived monomers and monomers groups was evaluated using the adipocyte model. PC maintained the mitochondrial ultrastructure, alleviated mitochondrial oxidative stress, and regulated the energy metabolism and the fatty acid β oxidation to relieve lipid emulsion-induced cellular steatosis and HFD-induced MAFLD. PC-derived components entering the liver mitochondria inhibited oxidative stress injury and improved the energy metabolism to fight cellular steatosis. Additionally, 15 chemicals were identified in the PC-treated rat liver mitochondria. These identified chemical molecules and molecule groups in the mitochondria prevented cellular steatosis by regulating mitochondrial oxidative stress and energy metabolism. PC restores mitochondrial structure and function, alleviating MAFLD, which is related to oxidative stress, energy metabolism, and fatty acid β oxidation. The identified 15 components may be the main effective PC components regulating mitochondria function to alleviate MAFLD. Thus, PC may be a promising mitochondrial regulator to prevent MAFLD.

Keywords