BMC Cardiovascular Disorders (Jan 2005)

The association of spatial T wave axis deviation with incident coronary events. The ARIC cohort

  • Rosamond Wayne D,
  • Folsom Aaron R,
  • Chambless Lloyd E,
  • Whitsel Eric A,
  • Prineas Ronald J,
  • Rautaharju Pentti M,
  • Vaidean Georgeta D,
  • Zhang Zhu-Ming,
  • Crow Richard S,
  • Heiss Gerardo

DOI
https://doi.org/10.1186/1471-2261-5-2
Journal volume & issue
Vol. 5, no. 1
p. 2

Abstract

Read online

Abstract Background Although current evidence suggests that the spatial T wave axis captures important information about ventricular repolarization abnormalities, there are only a few and discordant epidemiologic studies addressing the ability of the spatial T wave axis to predict coronary heart disease (CHD) occurrence. Methods This prospective study analyzed data from 12,256 middle-aged African American and white men and women, from the Atherosclerosis Risk in Communities Study (ARIC). Following a standardized protocol, resting standard 12-lead, 10-second electrocardiograms were digitized and analyzed with the Marquette GE program. The median follow-up time was 12.1 years; incident coronary heart disease comprised fatal and non-fatal CHD events. Results The incidence rate of CHD was 4.26, 4.18, 4.28 and 5.62 per 1000 person-years respectively, across the spatial T wave axis quartiles. Among women for every 10 degrees increase in the spatial T wave axis deviation, there was an estimated increase in the risk of CHD of 1.16 (95% CI 1.04–1.28). After adjustment for age, height, weight, smoking, hypertension, diabetes, QRS axis and minor T wave abnormalities, this hazard rate ratio for women fell to 1.03 (0.92–1.14). The corresponding crude and adjusted hazard ratios for men were 1.05 (95% CI 0.96–1.15) and 0.95 (0.86–1.04) respectively. Conclusions In conclusion, this prospective, population-based, bi-ethnic study of men and women free of coronary heart disease at baseline shows that spatial T wave axis deviation is not associated with incident coronary events during long-term follow up. It is doubtful that spatial T wave axis deviation would add benefit in the prediction of CHD events above and beyond the current traditional risk factors.