Cells (Jul 2022)

Pseudoislet Aggregation of Pancreatic β-Cells Improves Glucose Stimulated Insulin Secretion by Altering Glucose Metabolism and Increasing ATP Production

  • Deborah Cornell,
  • Satomi Miwa,
  • Merilin Georgiou,
  • Scott James Anderson,
  • Minna Honkanen-Scott,
  • James A. M. Shaw,
  • Catherine Arden

DOI
https://doi.org/10.3390/cells11152330
Journal volume & issue
Vol. 11, no. 15
p. 2330

Abstract

Read online

Appropriate glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells is an essential component of blood glucose homeostasis. Configuration of β-cells as 3D pseudoislets (PI) improves the GSIS response compared to 2D monolayer (ML) culture. The aim of this study was to determine the underlying mechanisms. MIN6 β-cells were grown as ML or PI for 5 days. Human islets were isolated from patients without diabetes. Function was assessed by GSIS and metabolic capacity using the Seahorse bioanalyser. Connexin 36 was downregulated using inducible shRNA. Culturing MIN6 as PI improved GSIS. MIN6 PI showed higher glucose-stimulated oxygen consumption (OCR) and extracellular acidification (ECAR) rates. Further analysis showed the higher ECAR was, at least in part, a consequence of increased glycolysis. Intact human islets also showed glucose-stimulated increases in both OCR and ECAR rates, although the latter was smaller in magnitude compared to MIN6 PI. The higher rates of glucose-stimulated ATP production in MIN6 PI were consistent with increased enzyme activity of key glycolytic and TCA cycle enzymes. There was no impact of connexin 36 knockdown on GSIS or ATP production. Configuration of β-cells as PI improves GSIS by increasing the metabolic capacity of the cells, allowing higher ATP production in response to glucose.

Keywords