Radioengineering (Apr 2015)

On the Design and Performance Analysis of Low-Correlation Compact Space-Multimode Diversity Stacked Microstrip Antenna Arrays for MIMO-OFDM WLANs over Statistically-Clustered Indoor Radio Channels

  • A. Savaşcıhabeş,
  • O. Ertuğ,
  • E. Yazgan

Journal volume & issue
Vol. 24, no. 1
pp. 54 – 63

Abstract

Read online

The support of high spectral efficiency MIMO spatial-multiplexing communication in OFDM-based WLAN systems conforming to IEEE 802.11n standard requires the design and use of compact antennas and arrays with low correlation ports. For this purpose, compact space-multimode diversity provisioning stacked circular multimode microstrip patch antenna arrays (SCP-ULA) are proposed in this paper and their performance in terms of spatial and modal correlations, ergodic spectral efficiencies as well as compactness with respect to antenna arrays formed of vertically-oriented center-fed dipole elements (DP-ULA) and dominant-mode operating circular microstrip patch antennas (CP-ULA) are presented. The lower spatial and modal correlations and the consequent higher spectral efficiency of SCP-ULA with ML detection over statistically-clustered Kronecker-based spatially-correlated NLOS Ricean fading channels with respect to DP-ULA and CP-ULA at significantly lower antenna and array sizes represents SCP-ULA as a promising solution for deployment in terminals, modems and access points of next-generation high-speed 802.11n MIMO-OFDM WLAN systems.

Keywords