Atmosphere (Dec 2019)
Levels and Sources of Atmospheric Particle-Bound Mercury in Atmospheric Particulate Matter (PM<sub>10</sub>) at Several Sites of an Atlantic Coastal European Region
Abstract
Atmospheric particle-bound mercury (PHg) quantification, at a pg m−3 level, has been assessed in particulate matter samples (PM10) at several sites (industrial, urban and sub-urban sites) of Atlantic coastal European region during 13 months by using a direct thermo-desorption method. Analytical method validation was assessed using 1648a and ERM CZ120 reference materials. The limits of detection and quantification were 0.25 pg m−3 and 0.43 pg m−3, respectively. Repeatability of the method was generally below 12.6%. PHg concentrations varied between 1.5–30.8, 1.5–75.3 and 2.27–33.7 pg m−3 at urban, sub-urban and industrial sites, respectively. PHg concentration varied from 7.2 pg m−3 (urban site) to 16.3 pg m−3 (suburban site) during winter season, while PHg concentrations varied from 9.9 pg m−3 (urban site) to 19.3 pg m−3 (suburban site) during the summer. Other trace elements, major ions, black carbon (BC) and UV-absorbing particulate matter (UV PM) was also assessed at several sites. Average concentrations for trace metals (Al, As, Bi, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Si, Sr, V and Zn) ranged from 0.08 ng m−3 (Bi) at suburban site to 1.11 µg m−3 (Fe) at industrial site. Average concentrations for major ions (including Na+, K+, Ca2+, NH4+, Mg2+, Cl−, NO3− and SO42−) ranged from 200 ng m−3 (K+) to 5332 ng m−3 (SO42−) at urban site, 166 ng m−3 (Mg2+) to 4425 ng m−3 (SO42−) at suburban site and 592 ng m−3 (K+) to 5853 ng m−3 (Cl−) at industrial site. Results of univariate analysis and principal component analysis (PCA) suggested crustal, marine and anthropogenic sources of PHg in PM10 at several sites studied. Toxicity prediction of PHg, by using hazard quotient, suggested no non-carcinogenic risk for adults.
Keywords