Developmental Cognitive Neuroscience (Aug 2019)
Nine-month-old infants update their predictive models of a changing environment
Abstract
Humans generate internal models of their environment to predict events in the world. As the environments change, our brains adjust to these changes by updating their internal models. Here, we investigated whether and how 9-month-old infants differentially update their models to represent a dynamic environment. Infants observed a predictable sequence of stimuli, which were interrupted by two types of cues. Following the update cue, the pattern was altered, thus, infants were expected to update their predictions for the upcoming stimuli. Because the pattern remained the same after the no-update cue, no subsequent updating was required. Infants showed an amplified negative central (Nc) response when the predictable sequence was interrupted. Late components such as the PSW were also evoked in response to unexpected stimuli; however, we found no evidence for a differential response to the informational value of surprising cues at later stages of processing. Infants rather learned that surprising cues always signal a change in the environment that requires updating. Interestingly, infants responded with an amplified neural response to the absence of an expected change, suggesting a top-down modulation of early sensory processing in infants. Our findings corroborate emerging evidence showing that infants build predictive models early in life. Keywords: Internal models, Predictive models, Predictive processing, Development, Event-Related potentials