Photonics (Jan 2024)

Design of a Spaceborne, Compact, Off-Axis, Multi-Mirror Optical System Based on Freeform Surfaces

  • Baohua Wang,
  • Xiaoyong Wang,
  • Huilin Jiang,
  • Yuanyuan Wang,
  • Chao Yang,
  • Yao Meng

DOI
https://doi.org/10.3390/photonics11010051
Journal volume & issue
Vol. 11, no. 1
p. 51

Abstract

Read online

Based on the application requirements of high spectral resolutions, high spatial resolutions and wide swatches, a new-generation, high-performance, spaceborne, hyperspectral imaging spectrometer (NGHSI) with a spatial resolution of 15 m and a swatch of 90 km is proposed. The optical system of the NGHSI has a focal length of 1128 mm, an F-number of three, a field of view (FOV) of 7.32° and a slit length of 144 mm. A new off-axis, multi-mirror telescope structure with intermediate images is put forward, which solves the design problem that realizes secondary imaging and good telecentricity at the same time. And a new off-axis lens-compensation Offner configuration is adopted to address the challenge of the high-fidelity design of spectral imaging systems with long slit lengths. The relationship between X-Y polynomials and aberration coefficients is analyzed, and the X-Y polynomial freeform surfaces are used to correct the off-axis aberrations. The design results show that the image quality of the telescope system is close to the diffraction limit. The smile, known as the spectral distortion along the line, and keystone, which is the magnification difference for different wavelengths, of the spectral imaging system are less than 1/10 pixel size. The complete optical system of the NGHSI, including the telescope system and the spectral imaging system, has excellent imaging quality and the layout is compact and reasonable, which realizes the miniaturization design.

Keywords