SFRP2 Overexpression Induces an Osteoblast-like Phenotype in Prostate Cancer Cells
Elif Akova Ölken,
Attila Aszodi,
Hanna Taipaleenmäki,
Hiroaki Saito,
Veronika Schönitzer,
Michael Chaloupka,
Maria Apfelbeck,
Wolfgang Böcker,
Maximilian Michael Saller
Affiliations
Elif Akova Ölken
Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
Attila Aszodi
Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
Hanna Taipaleenmäki
Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), LMU Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
Hiroaki Saito
Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), LMU Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
Veronika Schönitzer
Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
Maximilian Michael Saller
Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
Prostate cancer bone metastasis is still one of the most fatal cancer diagnoses for men. Survival of the circulating prostate tumor cells and their adaptation strategy to survive in the bone niche is the key point to determining metastasis in early cancer stages. The promoter of SFRP2 gene, encoding a WNT signaling modulator, is hypermethylated in many cancer types including prostate cancer. Moreover, SFRP2 can positively regulate osteogenic differentiation in vitro and in vivo. Here, we showed SFRP2 overexpression in the prostate cancer cell line PC3 induces an epithelial mesenchymal transition (EMT), increases the attachment, and modifies the transcriptome towards an osteoblast-like phenotype (osteomimicry) in a collagen 1-dependent manner. Our data reflect a novel molecular mechanism concerning how metastasizing prostate cancer cells might increase their chance to survive within bone tissue.