High-Confidence Computing (Mar 2024)
Neural-based inexact graph de-anonymization
Abstract
Graph de-anonymization is a technique used to reveal connections between entities in anonymized graphs, which is crucial in detecting malicious activities, network analysis, social network analysis, and more. Despite its paramount importance, conventional methods often grapple with inefficiencies and challenges tied to obtaining accurate query graph data. This paper introduces a neural-based inexact graph de-anonymization, which comprises an embedding phase, a comparison phase, and a matching procedure. The embedding phase uses a graph convolutional network to generate embedding vectors for both the query and anonymized graphs. The comparison phase uses a neural tensor network to ascertain node resemblances. The matching procedure employs a refined greedy algorithm to discern optimal node pairings. Additionally, we comprehensively evaluate its performance via well-conducted experiments on various real datasets. The results demonstrate the effectiveness of our proposed approach in enhancing the efficiency and performance of graph de-anonymization through the use of graph embedding vectors.