Brain Sciences (Mar 2023)
Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients
Abstract
This study aimed to determine whether peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell–inner plexiform layer (GCIPL) thickness thresholds for single-time-point swept-source optical coherence tomography (SS-OCT) measures can differentiate the clinical outcomes of treatment-naïve people with multiple sclerosis (pwMS). A total of 275 patients with the clinically isolated syndrome (n = 23), benign MS (n = 8), relapsing–remitting MS (n = 185), secondary progressive MS (n = 28), primary progressive MS (n = 31), and with no history of optic neuritis were included. The mean Expanded Disability Status Scale (EDSS) score was 3.0 ± 1.6. The cut-off values of pRNFL (87 µm and 88 µm) and GCIPL (70 µm) thicknesses have been adopted from previous studies using spectral-domain OCT. PwMS with pRNFL ≤87 µm and ≤88 µm had a longer disease duration, more advanced disability, and more frequently progressive MS variants compared to those with greater pRNFL thicknesses. In distinguishing pwMS with disability greater than or equal to the mean EDSS score (EDSS ≥ 3) from those with less severe disability, GCIPL thickness <70 µm had the highest sensitivity, while pRNFL thickness ≤87 µm had the greatest specificity. The optimal cut-off values differentiating patients with EDSS ≥ 3 from those with less severe disability was 63 µm for GCIPL thickness and 93.5 µm for pRNFL thickness. In conclusion, pRNFL and GCIPL thickness thresholds for single-time-point SS-OCT measurements may be helpful in differentiating the disability status of treatment-naïve pwMS.
Keywords