Nature Communications (Mar 2024)

Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains

  • Zhengyang Kong,
  • Elvis K. Boahen,
  • Dong Jun Kim,
  • Fenglong Li,
  • Joo Sung Kim,
  • Hyukmin Kweon,
  • So Young Kim,
  • Hanbin Choi,
  • Jin Zhu,
  • Wu Bin Ying,
  • Do Hwan Kim

DOI
https://doi.org/10.1038/s41467-024-46334-4
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 12

Abstract

Read online

Abstract The development of advanced materials capable of autonomous self-healing and mechanical stimulus sensing in aquatic environments holds great promise for applications in underwater soft electronics, underwater robotics, and water-resistant human-machine interfaces. However, achieving superior autonomous self-healing properties and effective sensing simultaneously in an aquatic environment is rarely feasible. Here, we present an ultrafast underwater molecularly engineered self-healing piezo-ionic elastomer inspired by the cephalopod’s suckers, which possess self-healing properties and mechanosensitive ion channels. Through strategic engineering of hydrophobic C–F groups, hydrolytic boronate ester bonds, and ions, the material achieves outstanding self-healing efficiencies, with speeds of 94.5% (9.1 µm/min) in air and 89.6% (13.3 µm/min) underwater, coupled with remarkable pressure sensitivity (18.1 kPa–1) for sensing performance. Furthermore, integration of this mechanosensitive device into an underwater submarine for signal transmission and light emitting diode modulation demonstrates its potential for underwater robotics and smarter human-machine interactions.