Biogeosciences (Nov 2011)
Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff
Abstract
The fate of organic carbon (C) lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-year-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above-ground biomass were measured during two contrasting years (vegetated (2004) vs. non-vegetated (2005)), followed by collection of sediment cores to the antecedent soil layer, representing 13 years of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13 yr) sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg<sup>–1</sup>) and δ<sup>13</sup>C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20–35 g kg<sup>–1</sup>) underlain by C depleted (5–10 g kg<sup>–1</sup>) sediments and an increasing δ<sup>13</sup>C signature with depth indicating increased decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m<sup>2</sup> in 2004), fluctuating cycles of flooding and drying maintained the long-term C concentration at the same level as inflowing sediment (i.e., 14 g kg<sup>–1</sup>), indicating no additional long-term storage of endogenous C. These results demonstrate that constructed flow-through wetlands can serve as important sinks for eroded C and sediment in agricultural landscapes, however, additional C sequestration via enrichment from endogenous sources may be limited in seasonally-saturated wetlands due to rapid decomposition during drying cycles.