Symmetry (May 2021)
On Certain Differential Subordination of Harmonic Mean Related to a Linear Function
Abstract
In this paper we study a certain differential subordination related to the harmonic mean and its symmetry properties, in the case where a dominant is a linear function. In addition to the known general results for the differential subordinations of the harmonic mean in which the dominant was any convex function, one can study such differential subordinations for the selected convex function. In this case, a reasonable and difficult issue is to look for the best dominant or one that is close to it. This paper is devoted to this issue, in which the dominant is a linear function, and the differential subordination of the harmonic mean is a generalization of the Briot–Bouquet differential subordination.
Keywords