Journal of Function Spaces (Jan 2017)
Morrey Meets Herz with Variable Exponent and Applications to Commutators of Homogeneous Fractional Integrals with Rough Kernels
Abstract
We define the new central Morrey space with variable exponent and investigate its relation to the Morrey-Herz spaces with variable exponent. As applications, we obtain the boundedness of the homogeneous fractional integral operator TΩ,σ and its commutator [b,TΩ,σ] on Morrey-Herz space with variable exponent, where Ω∈Ls(Sn-1) for s≥1 is a homogeneous function of degree zero, 0<σ<n, and b is a BMO function.