BMC Genetics (Aug 2007)

Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (<it>Salmo Salar</it>): comparing survival analysis with analysis on affected/resistant data

  • Lien Sigbjørn,
  • Hayes Ben,
  • Sonesson Anna K,
  • Moen Thomas,
  • Munck Hege,
  • Meuwissen Theo HE

DOI
https://doi.org/10.1186/1471-2156-8-53
Journal volume & issue
Vol. 8, no. 1
p. 53

Abstract

Read online

Abstract Background Infectious Salmon Anaemia (ISA) is a viral disease affecting farmed Atlantic salmon (Salmo salar) worldwide. The identification of Quantitative Trait Loci (QTL) affecting resistance to the disease could improve our understanding of the genetics underlying the trait and provide a means for Marker-Assisted Selection. We previously performed a genome scan on commercial Atlantic salmon families challenge tested for ISA resistance, identifying several putative QTL. In the present study, we set out to validate the strongest of these QTL in a larger family material coming from the same challenge test, and to determine the position of the QTL by interval mapping. We also wanted to explore different ways of performing QTL analysis within a survival analysis framework (i.e. using time-to-event data), and to compare results using survival analysis with results from analysis on the dichotomous trait 'affected/resistant'. Results The QTL, located on Atlantic salmon linkage group 8 (following SALMAP notation), was confirmed in the new data set. Its most likely position was at a marker cluster containing markers BHMS130, BHMS170 and BHMS553. Significant segregation distortion was observed in the same region, but was shown to be unrelated to the QTL. A maximum likelihood procedure for identifying QTL, based on the Cox proportional hazard model, was developed. QTL mapping was also done using the Haley-Knott method (affected/resistant data), and within a variance-component framework (affected/resistant data and time-to-event data). In all cases, analysis using affected/resistant data gave stronger evidence for a QTL than did analysis using time-to-event data. Conclusion A QTL for resistance to Infectious Salmon Anaemia in Atlantic salmon was validated in this study, and its more precise location on linkage group eight was determined. The QTL explained 6% of the phenotypic variation in resistance to the disease. The linkage group also displayed significant segregation distortion. Survival models proved in this case not to be more suitable than models based on the dichotomous trait 'affected/resistant' for analysing the data.