Imaging Diffractometric Biosensors for Label-Free, Multi-Molecular Interaction Analysis
Cornelia Reuter,
Walter Hauswald,
Sindy Burgold-Voigt,
Uwe Hübner,
Ralf Ehricht,
Karina Weber,
Juergen Popp
Affiliations
Cornelia Reuter
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
Walter Hauswald
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
Sindy Burgold-Voigt
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
Uwe Hübner
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
Ralf Ehricht
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
Karina Weber
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
Juergen Popp
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
Biosensors are used for the specific and sensitive detection of biomolecules. In conventional approaches, the suspected target molecules are bound to selected capture molecules and successful binding is indicated by additional labelling to enable optical readout. This labelling requires additional processing steps tailored to the application. While numerous label-free interaction assays exist, they often compromise on detection characteristics. In this context, we introduce a novel diffractometric biosensor, comprising a diffractive biosensor chip and an associated optical reader assembly. This innovative system can capture an entire assay, detecting various types of molecules in a label-free manner and present the results within in a single, comprehensive image. The applicability of the biosensor is assessed for the detection of viral DNA as well as proteins directly in human plasma, investigating different antigens. In our experiments, we achieve a detection limit of 4.2 pg/mm², which is comparable to other label-free optical biosensors. The simplicity and robustness of the method make it a compelling option for advancing biosensing technologies. This work contributes to the development of an imaging diffractometric biosensor with the potential for multiple applications in molecular interaction analysis.