Journal of International Medical Research (Jun 2021)
Identification of crucial genes and pathways associated with prostate cancer in multiple databases
Abstract
Objective Prostate cancer (PCa) is a malignant neoplasm of the urinary system. This study aimed to use bioinformatics to screen for core genes and biological pathways related to PCa. Methods The GSE5957 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were constructed by R language. Furthermore, protein–protein interaction (PPI) networks were generated to predict core genes. The expression levels of core genes were examined in the Tumor Immune Estimation Resource (TIMER) and Oncomine databases. The cBioPortal tool was used to study the co-expression and prognostic factors of the core genes. Finally, the core genes of signaling pathways were determined using gene set enrichment analysis (GSEA). Results Overall, 874 DEGs were identified. Hierarchical clustering analysis revealed that these 24 core genes have significant association with carcinogenesis and development . LONRF1, CDK1, RPS18, GNB2L1 ( RACK1 ), RPL30 , and SEC61A1 directly related to the recurrence and prognosis of PCa. Conclusions This study identified the core genes and pathways in PCa and provides candidate targets for diagnosis, prognosis, and treatment.