Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry
Isaí Espinoza-Torres,
Israel Martínez-Ramírez,
Juan Manuel Sierra-Hernández,
Daniel Jauregui-Vazquez,
Miguel Ernesto Gutiérrez-Rivera,
Felipe de Jesús Torres-Del Carmen,
Tania Lozano-Hernández
Affiliations
Isaí Espinoza-Torres
Departamento de Ingeniería Mecánica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico
Israel Martínez-Ramírez
Departamento de Ingeniería Mecánica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico
Juan Manuel Sierra-Hernández
Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico
Daniel Jauregui-Vazquez
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), División de Física Aplicada-Departamento de Óptica, Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, Mexico
Miguel Ernesto Gutiérrez-Rivera
Departamento de Ingeniería Mecánica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico
Felipe de Jesús Torres-Del Carmen
Departamento de Ingeniería Mecánica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico
Tania Lozano-Hernández
Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico
This research presents an experimental study focused on measuring temperature at the tool flank during the up-milling process at high cutting speed. The proposed system deals with emissivity compensation through a two-photodetector system and during calibration. A ratio pyrometer composed of two photodetectors and a multimode fiber-optic coupler is employed to capture the radiation emitted by the cutting insert. The pyrometer is calibrated using an innovative calibration system that addresses theoretical discrepancies arising from various factors affecting the measurement of cutting temperature. This calibration system replicates the milling process to generate a calibration curve. Experimentally, AISI 4140 steel is machined with coated tungsten carbide inserts, using cutting speeds of 300 and 400 m/min, and feed rates of 0.08 and 0.16 mm/tooth. The results reveal a maximum recorded cutting temperature of 518 °C and a minimum of 304 °C. The cutting temperature tends to increase with higher cutting speeds and feed rates, with cutting speed being the more influential factor in this increase. Both the pyrometer calibration and experimental outcomes yield satisfactory results. Finally, the results showed that the process and the device prove to be a convenient, effective, and precise method of measuring cutting temperature in machine processes.