Translational Psychiatry (Nov 2024)
Depression and metabolic connectivity: insights into the locus coeruleus, HF-rTMS, and anxiety
Abstract
Abstract The use of repetitive Transcranial Magnetic Stimulation (rTMS) in treating major depressive disorder (MDD) is increasingly being explored in precision medicine. However, there’s a notable lack of understanding of the underlying neurobiological effects, which limits our ability to correlate specific imaging features with treatment efficacy. As one possible neurobiological mechanism, clinical research has already shown that in MDD, lower norepinephrine release in the locus coeruleus (LC) triggers depressive symptoms, and pharmacological approaches that block norepinephrine reuptake boost its levels, easing depression. Surprisingly, the LC has not received a more pronounced focus in contemporary rTMS research. This study investigates the role of the LC in MDD and its response to high-frequency (HF)-rTMS using 18FDG-PET imaging. We compared LC metabolic connectivity between MDD patients (n = 43) and healthy controls (n = 32). Additionally, we evaluated the predictive value of LC connectivity for HF-rTMS treatment outcomes and examined post-treatment changes in LC metabolic connectivity. Our findings revealed significant differences in LC metabolic connectivity between MDD patients and controls. Baseline LC metabolic connectivity did not predict HF-rTMS treatment outcomes. However, post-treatment analyses showed a significant correlation between improved clinical outcomes and attenuation of LC metabolic connectivity in regions associated with cognitive control and the default mode network. Notably, a reduction in state anxiety moderated this relationship, highlighting the role of anxiety in HF-rTMS efficacy for MDD treatment. Our findings suggest that LC metabolic connectivity, influenced by state anxiety levels, may be crucial in HF-rTMS efficacy, offering further insights for personalized MDD treatment strategies.