Metabolites (Feb 2023)

Machine Learning Methods Improve Specificity in Newborn Screening for Isovaleric Aciduria

  • Elaine Zaunseder,
  • Ulrike Mütze,
  • Sven F. Garbade,
  • Saskia Haupt,
  • Patrik Feyh,
  • Georg F. Hoffmann,
  • Vincent Heuveline,
  • Stefan Kölker

DOI
https://doi.org/10.3390/metabo13020304
Journal volume & issue
Vol. 13, no. 2
p. 304

Abstract

Read online

Isovaleric aciduria (IVA) is a rare disorder of leucine metabolism and part of newborn screening (NBS) programs worldwide. However, NBS for IVA is hampered by, first, the increased birth prevalence due to the identification of individuals with an attenuated disease variant (so-called “mild” IVA) and, second, an increasing number of false positive screening results due to the use of pivmecillinam contained in the medication. Recently, machine learning (ML) methods have been analyzed, analogous to new biomarkers or second-tier methods, in the context of NBS. In this study, we investigated the application of machine learning classification methods to improve IVA classification using an NBS data set containing 2,106,090 newborns screened in Heidelberg, Germany. Therefore, we propose to combine two methods, linear discriminant analysis, and ridge logistic regression as an additional step, a digital-tier, to traditional NBS. Our results show that this reduces the false positive rate by 69.9% from 103 to 31 while maintaining 100% sensitivity in cross-validation. The ML methods were able to classify mild and classic IVA from normal newborns solely based on the NBS data and revealed that besides isovalerylcarnitine (C5), the metabolite concentration of tryptophan (Trp) is important for improved classification. Overall, applying ML methods to improve the specificity of IVA could have a major impact on newborns, as it could reduce the newborns’ and families’ burden of false positives or over-treatment.

Keywords