Geofluids (Jan 2020)

Describing the Full Pore Size Distribution of Tight Sandstone and Analyzing the Impact of Clay Type on Pore Size Distribution

  • Qiang Lei,
  • Liehui Zhang,
  • Hongming Tang,
  • Yulong Zhao,
  • Man Chen,
  • Chunyu Xie

DOI
https://doi.org/10.1155/2020/5208129
Journal volume & issue
Vol. 2020

Abstract

Read online

Understanding the pore size distribution (PSD) of tight sandstone and the effect of clay minerals on the PSD is important for reservoir evaluation. Due to the complex shape of clay minerals, the multiscale pore size of tight sandstone, and the limitation of different experimental methods, it is hard to characterize the full PSD of tight sandstone, especially the point of connection (POC) of different derived PSD curves. In this paper, a more comprehensive technique integrated different precision methods of N2/CO2 low-pressure adsorption isotherms (N2/CO2-LPAI), mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR), and synchrotron X-ray computed tomography (XCT) to investigate the full PSD for three typical tight sandstones in China. Two different forms of PSD data presentations, differential pore volume versus diameter (dV/dR) and the log differential pore volume versus diameter (dV/dlogR), were firstly used to determine the POC. The full integrated PSD curves and scanning electron microscopy (SEM) images were carried out on the different clay-rich tight sandstones. The results show that the pores are classified into three types: intercrystalline pores (less than 0.01 μm), clay-related pores and residual intergranular pores (0.01 μm to 10 μm), and microfractures and dissolution pores (greater than 10 μm). The percentage of intercrystalline pores has a small relation on the porosity and connectivity, while there is a strong correlation among microfractures, dissolution pores, porosity, and especially connectivity. The microfractures and dissolution pores are the main connection channels, so a little change of the main connection channels will have a great effect on the permeability of the tight sandstones.