Composite of polylactic acid and microcellulose from kombucha membranes
Arteaga-Ballesteros Bárbara Estefanía,
Guevara-Morales Andrea,
Martín-Martínez Eduardo San,
Figueroa-López Ulises,
Vieyra Horacio
Affiliations
Arteaga-Ballesteros Bárbara Estefanía
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe, Km. 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza, Estado de México, 52926, México
Guevara-Morales Andrea
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe, Km. 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza, Estado de México, 52926, México
Martín-Martínez Eduardo San
Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación C.P. 11500, Ciudad de México
Figueroa-López Ulises
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe, Km. 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza, Estado de México, 52926, México
Vieyra Horacio
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo, Estado de México, 50110, México
Polylactic acid (PLA) is one of the main components of biodegradable and biocompatible composites. Bacterial cellulose from kombucha membranes is an excellent candidate to be used as a natural filler of eco-composites because it is renewable, has low cost, low density, and acceptable specific strength properties, and is biodegradable. The study aimed to prepare composites of PLA and bacterial cellulose to produce a biodegradable and compostable material. The bacterial microcellulose was obtained from kombucha membranes and blended with PLA by extrusion. The composites contained a PLA with 1%, 3%, and 5% of cellulose. We characterized the PLA, bacterial microcellulose, and composites to ascertain their size and aspect, degree of crystallinity, distribution of the cellulose into PLA, and their mechanical properties. We observed an increase in crystallinity proportional to the cellulose content for the blends and found that the 3% cellulose blend withstands the stress of up to 40 MPa and temperatures up to 120°C before distortion.