Systems (Nov 2014)

Postmodern Fuzzy System Theory: A Deconstruction Approach Based on Kabbalah

  • Gabriel Burstein,
  • Constantin Virgil Negoita,
  • Menachem Kranz

DOI
https://doi.org/10.3390/systems2040590
Journal volume & issue
Vol. 2, no. 4
pp. 590 – 605

Abstract

Read online

Modern general system theory proposed a holistic integrative approach based on input-state-output dynamics as opposed to the traditional reductionist detail based approach. Information complexity and uncertainty required a fuzzy system theory, based on fuzzy sets and fuzzy logic. While successful in dealing with analysis, synthesis and control of technical engineering systems, general system theory and fuzzy system theory could not fully deal with humanistic and human-like intelligent systems which combine technical engineering components with human or human-like components characterized by their cognitive, emotional/motivational and behavioral/action levels of operation. Such humanistic systems are essential in artificial intelligence, cognitive and behavioral science applications, organization management and social systems, man-machine systems or human factor systems, behavioral knowledge based economics and finance applications. We are introducing here a “postmodern fuzzy system theory” for controlled state dynamics and output fuzzy systems and fuzzy rule based systems using our earlier postmodern fuzzy set theory and a Kabbalah possible worlds model of modal logic and semantics type. In order to create a postmodern fuzzy system theory, we “deconstruct” a fuzzy system in order to incorporate in it the cognitive, emotional and behavioral actions and expressions levels characteristic for humanistic systems. Kabbalah offers a structural, fractal and hierarchic model for integrating cognition, emotions and behavior. We obtain a canonic deconstruction for a fuzzy system into its cognitive, emotional and behavioral fuzzy subsystems.

Keywords