Buildings (Oct 2024)

Research on the Mechanical Properties of Composite Grouting Materials Based on Ordinary Portland–Sulphoaluminate Cement

  • Zhenhua Wang,
  • Wei Lan,
  • Zhiwen Jia,
  • Manqing Lin,
  • Dongwei Li

DOI
https://doi.org/10.3390/buildings14113492
Journal volume & issue
Vol. 14, no. 11
p. 3492

Abstract

Read online

This study aimed to enhance the mechanical properties of calcium sulfoaluminate cement grouting materials (HCSA) by investigating the effects of ordinary Portland cement (OPC) content, the ratio of quicklime to gypsum, and the dosage of sodium aluminate on the compressive strength of the OPC-CSA composite system. The results indicate that as the OPC content increases, the compressive strength of the blended cement initially increases and then decreases, reaching a maximum at a 60% OPC replacement ratio within the experimental group. The addition of an appropriate amount of OPC to the CSA composite system effectively prevents the regression of compressive strength. With an increase in quicklime content, the compressive strength of the samples at various ages first increases and then decreases, with the optimal ratio of quicklime to gypsum found to be 2:8. Furthermore, sodium aluminate, used as an activator, when increased in dosage, leads to an initial increase followed by a decrease in the compressive strength of OPC-CSA samples, with an optimal incorporation rate of 0.75%, significantly enhancing the strength of the blended cement. In the orthogonal experiments, the dosage of sodium aluminate was identified as the most influential factor affecting the compressive strength of the composite grouting materials.

Keywords