Discrete Mathematics & Theoretical Computer Science (Jan 2009)
Universal cycles for permutation classes
Abstract
We define a universal cycle for a class of $n$-permutations as a cyclic word in which each element of the class occurs exactly once as an $n$-factor. We give a general result for cyclically closed classes, and then survey the situation when the class is defined as the avoidance class of a set of permutations of length $3$, or of a set of permutations of mixed lengths $3$ and $4$.
Keywords