Nauka ta progres transportu (Apr 2021)

Ways to Increase the Efficiency of Thermopressiometry

  • V. Y Ulyanov

DOI
https://doi.org/10.15802/stp2021/237279
Journal volume & issue
no. 2(92)
pp. 84 – 91

Abstract

Read online

Purpose. The purpose of the work is to identify the ways to increase the efficiency of engineering research, based on the significant amount of exploration work required in the creation of modern man-made objects, taking into account the shortcomings of existing instruments and equipment used to measure soil stress, and in relation to the need to improve the design of thermopressiometers, which are aimed to facilitate the study of frozen soils. Methodology. The ways to improve the blade thermopressiometer for the study of frozen soils with different aggregates were selected by the comparative-analytical method and the method of analogy. Thawing depth, absolute soil sediment, deformation modulus etc. were determined by thermal-technical calculations. Findings. The application issues of concern of the existing thermopressiometers (limited research of soils of a certain type, complexity and insufficient accuracy of readings) identified can be overcome by the proposed improved design of a blade thermopressiometer for testing frozen sandy-clay soils. It is based on the improved heating circuit, the applicationd of quality materials and changing the form of the blades and body. The device is intented for use on permafrost and natural frozen soils of the world, including Ukraine. Originality. For the first time we offered a model of an advanced thermopressiometer with an improved body shape made of high-quality corrosion-resistant materials, including non-metallic ones. It has the reduced number of blades to one retractable sector blade-stamp (square or round) and one heating blade-stamp. A special probe design with mechanical/hydraulical sensor drive with a thermocouple (or with two fork probes to improve the measurements) was proposed. It was also recommended to introduce an electric conductive system designed for thawed soils, with a rod for measuring the retractable blade-stamp. The possibility of using a thermopressiometer during the study of seasonally frozen soils is established. Practical value. Improving the device model should facilitate its application in engineering and geological research for various types of construction, including transport, hydraulic engineering, which use the methods of deep freezing of weak and unstable soils.

Keywords