Royal Society Open Science (Jun 2023)

Revisiting the HO●-initiated oxidation of L-proline amino acid in the aqueous phase: influence of transition metal ions

  • Dinh Hieu Truong,
  • Thi Huong Lan Nguyen,
  • Duy Quang Dao

DOI
https://doi.org/10.1098/rsos.230114
Journal volume & issue
Vol. 10, no. 6

Abstract

Read online

The oxidation of L-proline (Pro) by HO● radical in water and the influence of transition metal ions on this process has been revisited by using the density functional theory (DFT) method at the M05-2X/6-311 + + G(3df,3pd)//M05-2X/6-311 + + G(d,p) level of theory at the temperature of 298.15 K. The main reactive sites of the HO●–initiated oxidation of Pro via hydrogen atom transfer (HAT) reactions are at the β- and γ-carbon, with the branching ratios being 44.6% and 39.5%, respectively. The overall rate constant at 298.15 K is 6.04 × 108 M−1 s−1. In addition, Pro tends to form stable complexes with both Fe and Cu ions via the –COO functional group of dipole-salt form. The most stable Cu(II)-Pro complexes have high oxidant risks in enhancing the HO● formation in the presence of reducing agents. Besides this, the high oxidation state metal complexes, i.e. Fe(III)-Pro and Cu(II)-Pro, may be oxidized by HO● radical via HAT reactions but with a lower rate constant than that of free-Pro. By contrast, the low oxidation state metal complexes (i.e. Fe(II)-Pro and Cu(I)-Pro) have higher oxidation risks than the free ligands, and thus, the complexation enhances the oxidation of Pro amino acid.

Keywords