Unraveling the Mechanisms of Zirconium Metal–Organic Frameworks‐Based Mixed‐Matrix Membranes Preventing Polysulfide Shuttling
Wenqing Lu,
Zhenfeng Pang,
Aran Lamaire,
Fu Liu,
Shan Dai,
Moisés L. Pinto,
Rezan Demir‐Cakan,
Kong Ooi Tan,
Veronique Van Speybroeck,
Vanessa Pimenta,
Christian Serre
Affiliations
Wenqing Lu
Institut des Matériaux Poreux de Paris ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University 75005 Paris France
Zhenfeng Pang
Laboratoire des Biomolécules, LBM Département de Chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 75005 Paris France
Aran Lamaire
Center for Molecular Modeling (CMM) Ghent University Technologiepark‐Zwijnaarde 46 9052 Zwijnaarde Belgium
Fu Liu
Collège de France, Chimie du Solide et de l’Energie—UMR 8260 CNRS 75005 Paris France
Shan Dai
Institut des Matériaux Poreux de Paris ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University 75005 Paris France
Moisés L. Pinto
CERENA–Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais, 1 1049‐001 Lisboa Portugal
Rezan Demir‐Cakan
Department of Chemical Engineering Gebze Technical University 41400 Kocaeli Turkey
Kong Ooi Tan
Laboratoire des Biomolécules, LBM Département de Chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 75005 Paris France
Veronique Van Speybroeck
Center for Molecular Modeling (CMM) Ghent University Technologiepark‐Zwijnaarde 46 9052 Zwijnaarde Belgium
Vanessa Pimenta
Institut des Matériaux Poreux de Paris ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University 75005 Paris France
Christian Serre
Institut des Matériaux Poreux de Paris ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University 75005 Paris France
Lithium–sulfur batteries are considered as promising candidates for next‐generation energy storage devices for grid applications due to their high theoretical energy density. However, the inevitable shuttle effect of lithium polysulfides and/or dendrite growth of Li metal anodes hinder their commercial viability. Herein, the microporous Zr fumarate metal–organic framework (MOF)‐801(Zr) is considered to produce thin (≈15.6 μm, ≈1 mg cm2) mixed‐matrix membranes (MMM) as a novel interlayer for Li–S batteries. It is found that the MOF‐801(Zr)/C/PVDF‐HFP composite interlayer facilitates Li+ ions diffusion, and anchors polysulfides while promoting their redox conversion effectively. It is demonstrated that MOF‐801 effectively trapped polysulfides at the cathode side, and confirmed for the first time the nature of the interaction between the adsorbed polysulfides and the host framework, through a combination of solid‐state nuclear magnetic resonance and molecular dynamics simulations. The incorporation of MOF‐801(Zr)/C/PVDF‐HFP MMM interlayer results in a notable enhancement in the initial capacity of Li–S batteries up to 1110 mA h g−1. Moreover, even after 50 cycles, a specific capacity of 880 mA h g−1 is delivered.