Mixers used in the production of cement concrete operate under special conditions such as mechanical stresses, abrasive–erosive friction phenomena, and corrosive working environments. In this paper, the authors aimed to establish a correlation between the chemical composition of mixer blade materials and their wear behavior. Three types of alloyed (chromium) cast iron were used for an experimental program that included three sets of tests in accelerated wear conditions which replicated the actual working environment (mixture of mineral aggregate, sand, cement, and water). The tribological tests were carried out using a Baroid tribometer. The results indicated that regardless of the test environment, cast iron with the highest chromium content exhibited the best wear resistance. However, it cannot be concluded that the wear resistance of the studied cast iron materials increases as a direct result of an increase in chromium content. For a chromium content of less than 25%, a better tribological behavior was observed for cast iron with a lower chromium content (of about 4%) than for cast irons with a higher chromium content (of about 9%).