Metals (Oct 2021)
Submerged Dissimilar Friction Stir Welding of AA6061 and AA7075 Aluminum Alloys: Microstructure Characterization and Mechanical Property
Abstract
The possibility of underwater dissimilar friction stir welding of AA6061 and AA7075 aluminum alloy was explored to overcome the problem of hardness loss in different microstructural zones. Optical microscopy and electron backscattered diffraction were employed to characterize the microstructure of the joint. Vickers hardness measurements were conducted on the cross-section of the joint to evaluate the mechanical strengths. The results showed that the microstructure of the AA7075 side had undergone the same mechanisms as those occurring during conventional friction stir welding. In the case of the AA6061 side, in addition to typical restoration mechanisms, the grain subdivision was observed. The AA7075 side had finer grains compared to the AA6061 side, which may be related to the different morphology and size of precipitates. Moreover, friction stir welding caused a reduction in the hardness values in all the microstructural areas compared to those of corresponding base materials. For example, it caused a reduction in the hardness of a thermomechanically affected zone from 105 HV to 93 HV in the AA6061 side, and from 187 HV to 172 HV in the AA7075 side. The underwater media improved the overall hardness values in thermo-mechanically affected zones (13% reduction in hardness) compared to those reported in literature (57% reduction in hardness).
Keywords