Journal of Marine Science and Engineering (May 2023)

Reconstructing Ocean Subsurface Temperature and Salinity from Sea Surface Information Based on Dual Path Convolutional Neural Networks

  • Kai Mao,
  • Chang Liu,
  • Shaoqing Zhang,
  • Feng Gao

DOI
https://doi.org/10.3390/jmse11051030
Journal volume & issue
Vol. 11, no. 5
p. 1030

Abstract

Read online

Satellite remote sensing can provide observation information of the sea surface, and using the sea surface information to reconstruct the subsurface temperature (ST) and subsurface salinity (SS) information has significant application values. This study proposes an intelligent algorithm based on Dual Path Convolutional Neural Networks (DP-CNNs) to reconstruct the ST and SS. The DP-CNN can integrate known information including sea surface temperature (SST), sea surface salinity (SSS), and sea surface height (SSH) to reconstruct the ST and SS. The reconstruction model based on DP-CNN can solve the problem of detail information loss in traditional CNN (Convolutional Neural Network) models. This study performs experiments for the South China Sea under different seasons using reanalysis data. The experimental results show that the DP-CNN models have higher reconstruction accuracy than the CNN models, and this proves that DP-CNNs effectively mitigate the loss of detailed information in the CNN models. Compared with the ground truth data, the ST/SS reconstruction results of the DP-CNN model exhibited a high coefficient of determination (0.93/0.86) and a low root mean square error (around 0.31 °C/0.05 PSU). Therefore, the DP-CNN models can be used as an effective approach to reconstruct ST and SS using sea surface information.

Keywords