ABUAD Journal of Engineering Research and Development (Jul 2024)
Unlocking the Potential of Palm Kernel Shell and Quarry Dust: A Cost-Driven Approach to Replacing Sand and Gravel in Concrete
Abstract
This research investigates the potential of palm kernel shells (PKS) and quarry dust (QD) as sustainable and cost-effective replacements for sand and gravel in concrete production. The study explores the impact of varying PKS and QD content on workability, density, water absorption, and mechanical properties. While increasing these alternative aggregates decreases workability and density, it improves water absorption and, in some cases, mechanical strength. Response Surface Methodology (RSM) identified a combination of 5% PKS and 20% QD (-1, -1) as the optimal replacement level for achieving a balance between cost and performance. This mix offers a significant cost reduction of 18.2% relative to concrete made with conventional aggregates. The study highlights the potential of PKS and QD as sustainable alternatives for conventional aggregates. Utilizing these readily available waste materials can reduce reliance on natural resources, promote waste management practices, and contribute to a more environmentally friendly construction industry. Additionally, the research suggests that quarry dust alone might be a more suitable replacement material than PKS due to its superior influence on concrete strength. This research provides valuable insights for optimizing concrete mix design with PKS and QD, promoting cost-effective and sustainable construction practices in regions with abundant palm oil production and quarrying activities.
Keywords