Energies (Aug 2020)
Modeling and Compensation for Dead-Time Effect in High Power IGBT/IGCT Converters with SHE-PWM Modulation
Abstract
Research on applying selective harmonic elimination pulse width modulation (SHE-PWM) to high power converters has drawn tremendous interest, due to the advantages of low switching frequency and high output harmonic performance. In the fields of high power converters such as variable speed traction motor drives and static synchronous compensators (STATCOM), the adoption of high voltage but slow speed semiconductor devices, i.e., IGBT/IGCT, results in a longer dead time of several microseconds, which leads to a motor vibration in the former case or the distortion of grid current in the latter case. This paper analyzes in detail the mechanism of the dead-time effect on 3-level SHE-PWM with different operating conditions considered. For the first time, a general mathematical model describing the relationship between the dead time and harmonic distribution of SHE-PWM wave is established. Based on which an open-loop compensation method by inserting a margin time into the effective switching angles is proposed. Furthermore, a closed-loop controller that implements online adaptive adjustment of the margin time is designed in case of a variable frequency application. The effectiveness of the proposed method in different scenarios is verified through simulation results.
Keywords