Wavelength multiplexing infrared metasurfaces for protein recognition and trace detection
Dong Shiqing,
Dong Chao,
Shen Kesheng,
Zheng Yun,
Sun Jie,
Zhen Cheng,
Hu Haiyang,
Zhang Feng,
Zhang Zhe,
Liu Hongchao,
Lu Hai
Affiliations
Dong Shiqing
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Dong Chao
Henan Key Laboratory of Optoelectronic Sensing Integrated Application, College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang453007, China
Shen Kesheng
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Zheng Yun
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Sun Jie
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Zhen Cheng
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Hu Haiyang
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Zhang Feng
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Zhang Zhe
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Liu Hongchao
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Lu Hai
Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang453007, China
Infrared metasurfaces have exhibited exceptional optical properties that differ from naturally occurring metallic and dielectric nanostructure, enabling non-destructive and label-free sensing in a broadband region. However, implementing wavelength multiplexing sensors in broadband infrared has faced significant challenges. These challenges arise from the difficulty in efficiently exciting high Q resonances at specific wavelengths and the inability to individually tune each resonance. Herein, we present a dual resonant metasurface that utilizes a metal–dielectric–metal plasmonic grating and a dielectric–metal channel. By adjusting the vertical and horizontal structures of metasurface, we can independently modify the spectrum of the metasurface in the near-infrared and mid-infrared regions. This broadband infrared metasurface exhibits robust spectral regulation, enabling a polarization-dependent strategy for the dual-resonance. It offers a competitive advantage over traditional metallic nanostructure in refractive index sensing at the second near-infrared window and ultrasensitive vibrational spectroscopy in mid-infrared. Specifically, our proposed metasurface achieves protein concentration sensing and dynamic monitoring of protein concentration in the infrared two-zone. Additionally, it enhances the mid-infrared absorption of amide II with a high Q resonance. The metasurface which combines wavelength multiplexing and polarization dependent switch for protein recognition and trace detection, presents a novel approach for developing high-performance sensors and Integrated photonics sensors in the broadband infrared region.